Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Hans-Wolfram Lerner, Frauke Schödel, David Eckensberger and Michael Bolte *

^aInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany, and ^bInstitut für Organische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 173 KMean $\sigma(\text{C-C}) = 0.011 \text{ Å}$ Disorder in main residue R factor = 0.025 wR factor = 0.071 Data-to-parameter ratio = 18.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Rerefinement of triethylammonium iodide from new intensity data at low temperature

The anion and the cation of the title compound, $C_6H_{16}N^+\cdot I^-$, are located on special positions of site symmetry 3m. As a result, there is only a sixth of an ion pair in the asymmetric unit. The anion and cation are connected via an $N-H\cdots I$ hydrogen bond. Each methylene group is disordered over two equally occupied positions.

Received 14 April 2004 Accepted 19 April 2004 Online 24 April 2004

Comment

Recently, we reported on the properties and on the reactivity of di-tert-butylphenylsilyl halides (Lerner et al., 2001; Wiberg et al., 2001). We report here a new route to synthesize di-tert-butylphenylsilyl iodide, 'Bu₂PhSiI, and the X-ray crystal structure analysis of triethylammonium iodide, [HNEt₃]I, (I).

The synthesis of di-*tert*-butylphenylsilyl iodide, 'Bu₂PhSiI, was achieved by the reaction of di-*tert*-butylphenylsilane, 'Bu₂PhSiH, with iodine in the presence of triethylamine as indicated in the reaction scheme below.

$$tBu_2PhSiH + I_2$$
 $\xrightarrow{+ NEt_3}$ $tBu_2PhSiI + [HNEt_3]$ \downarrow

The cell parameters of (I) have already been published by Hendricks (1928) and the coordinates of the N, H(N) and I atoms have been determined by James *et al.* (1985). We present here the coordinates of all atoms determined from data measured at 173 K. The I and N atoms are located on special positions of site symmetry 3m, and the methyl C atom is located on a mirror plane. The anion and cation are connected *via* an $N-H\cdots I$ hydrogen bond.

Experimental

Di-*tert*-butylphenylsilyl iodide, ¹Bu₂PhSiI, was obtained by stirring a solution of 0.329 g (1.49 mmol) di-*tert*-butylphenylsilane, ¹Bu₂PhSiH, and 0.378 g (1.49 mmol) iodine in 10 ml CH₂Cl₂ in the presence of 0.21 ml (1.49 mmol) triethylamine at 273 K. Colourless crystals of [HNEt₃]I were grown from the reaction solution at room temperature.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Crystal data

 $C_6H_{16}N^+ \cdot I^-$ Mo $K\alpha$ radiation $M_r = 229.10$ Cell parameters from 12 855 Hexagonal, P63mc reflections a = 8.6555 (11) Å $\theta = 3.8-27.5^{\circ}$ c = 7.8351 (9) Å $\mu = 3.08 \text{ mm}^{-1}$ $V = 508.35 (11) \text{ Å}^3$ T = 173 (2) KZ = 2Needle, colourless $D_x = 1.497 \text{ Mg m}^{-3}$ $0.35 \times 0.12 \times 0.11 \text{ mm}$

Data collection

Stoe IPDS-II two-circle diffractometer 421 reflections with $I > 2\sigma(I)$ ω scans 422 reflections with $I > 2\sigma(I)$ ω scans 423 reflections ω scans 424 reflections ω scans 425 reflections ω scans 426 reflections ω scans 427 reflections ω scans ω s

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_o^2) + (0.0533P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.025$ + 0.0681*P*] $wR(F^2) = 0.071$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} < 0.001$ S = 1.09 $\Delta \rho_{\text{max}} = 1.00 \text{ e Å}$ 464 reflections $\Delta \rho_{\min} = -0.43 \text{ e Å}^{-3}$ 25 parameters H atoms treated by a mixture of Absolute structure: Flack (1983), independent and constrained 232 Friedel pairs refinement Flack parameter = 0.50(13)

Table 1Selected geometric parameters (Å, °).

N1-C1 ⁱ	1.452 (8)	C1-C2	1.530 (11)
N1-C1-C2	128.9 (7)		

Symmetry code: (i) x, x - y, z.

Table 2 Hydrogen-bonding geometry (Å, °).

$D-H\cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
N1-H1···I1	0.9 (2)	2.6 (2)	3.529 (11)	180

H atoms bonded to carbon were refined with fixed individual displacement parameters $[U_{\rm iso}({\rm H})=1.2U_{\rm eq}({\rm C}) \text{ or } 1.5U_{\rm eq}({\rm C}_{\rm methyl})]$, using a riding model, with C–H = 0.98 (methyl) and 0.99 Å (methylene). The H atom bonded to nitrogen was refined isotropically. The methylene group and the methyl H atoms are disordered

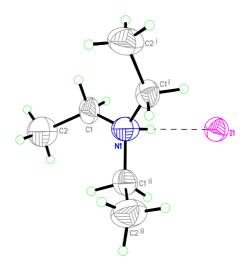


Figure 1

Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level. [Symmetry codes: (i) 1 - y, x - y, z; (ii) 1 - x + y, 1 - x, z.]

over two equally occupied positions each. The investigated crystal was an inversion twin; the ratio of the two twin components refined to 0.50 (13):0.50 (13).

Data collection: *X-AREA* (Stoe & Cie, 2001); cell refinement: *X-AREA*; data reduction: *X-AREA*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL-Plus* (Sheldrick, 1991); software used to prepare material for publication: *SHELXL*97 and *PLATON* (Spek, 1990).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Hendricks, S. B. (1928). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 67, 472–481.

James, M. A., Cameron, T. S., Knop. O., Neuman, M. & Falk, M. (1985). Can. J. Chem. 63, 1750–1758.

Lerner, H.-W., Scholz, S., Bolte, M. & Wagner, M. (2001). Z. Anorg. Allg. Chem. 627, 1638–1642.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Spek, A. L. (1990). Acta Cryst. A46, C-34.

Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.

Wiberg, N., Blank, T., Lerner, H.-W., Nöth, H., Habereder, T., & Fenske, D. (2001). Z. Naturforsch. Teil B, 56, 652-658.